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ALTERNATIVE CONDITIONS FOR THE SOLVABILITY 
OF AN ENCOUNTER-EVASION DIFFERENTIAL GAME* 

S. A. VAKHRAMEEV 

A positional encounter-evasion differential game With geOmetYiC COnStYaintS On the 

players' constraints, depending on the state {t,~) of the dynamic system, is exam- 
ined. It is proved that under specific conditions either the encounter positional 
game or the evasion positional game is always solvable. The constructions used in 
the proof are modifications of the extremal construction /l/. A similar problem was 
examined earlier in /2/ wherein, in particular, a condition of the type of condition 
(1.3) was suggested. 

1. Let the behavior of a controlled system be described by the differential equation 

i=f(t,x,u,Lj, SEER”, UER”, vERq (1.1) 

Here t is the system's phase-coordinate vector, u and v are the controls of the first and 
second players, respectively. By 8' we denote the space of all nonempty compact spaces in 
R* with the Hausdorff metric h. Let the mappings 

p: R x p-+-t", Q:Rx Rn--+@ (1.2) 

bepriscribed,satisfying the following conditions: 
a) the mappings 

P(.,x)::-+SY, Q(.,x):R-+@ 

are measurable for all zE I?' (see /3/j; 
b) the mappings 

P (t, .) : N” 4 SF, Q (t, .) : R” --f C’ 

are continuousfor all t E R; 
c) measurable mappings 

P,:R-+W. Q,:R+P 

exist such that for all SE Rn 

P (t, 4 c Pn (t), Q (6 z) c Qo (4 
It is assumed that the function f: R x Rn x RI’ x Rq -+ H” cm the right-hand side of 3%~. (1.1) 
satisfies the following conditions. 

lo. Function f(t. . . *, 0) : R” x RI’ x Rq + R” is continuous for all t E R. 

2O . Function f (., x,‘u, v): R+ R” is measurable for all xER", UE R”,vERQ. 

3O. For all z E R=, u E Pv, (t), v E Qo (t) 

4O 
If (t I zr u, VI I %z k (tw + 15 I) 

. For all x,yE Rn, u E Pa(t). u E Qo (t) 

I f (6 =Y u, VI - f (6 Y, u, v) I g h (t) I 5 - y I 

5O. For all x, y,z E R" 

f (k ys U? VI) I G Y 61 I 2 I I 2: - y I (1.3) 

The functions k,h, 7: R-tR are nonnegative and locally Lebesgue-summable. when mappings (1.2) 
axe independent of x condition (1.3) is equivalent to the saddle-point condition in a small 
game /l/ in the form suggested in /4/. If 7 (t)syo, then this condition is equivalenttothe 
condition, proposed in /2/, 
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a (t, 5, 2) = mar min (2, f (t, 5, U, v)) = min 
cEQ(t,r) uEP(t,s) 

mar: (2, f (6 5, 24 vi) 
UEI'(l,S) mx!(L,.q 

I u (6 x, 2) - u (t, y, 2) I -< yo I x - I/ 1 

for all x E R”, y E Ii”, z E R”, 1 z 1 = 1. 
We note two cases when condition (1.3) is fulfilled. Let 

1 (t, s, U, 01 = j1 (t. 7, u) -I- f? (t, 3, 1.) 

and let mappings (1.2) be such that the sets 

are convex for all (t,z)~R"+' and 

jr (PI (G 47 F, (t, y)) G Vl (0 15 - Y I, h w2 k 47 F* 0, y)) d y* (t) I 2 - Y I 

for all z,y,~ R”, where the functions ~1. YZ : R -R are nonnegative and locally summable. In 
this case inequality (1.3) is fulfilled with the function r(t) =a(t) +~~(t). Now assume that 
mappings (1.2) satisfy the following Lipschitz conditions: 

11 (P (t, .z), p (t, y) ) < a (t) 1 x - y 1, h (Q CL 4r Q (t> Y)) Q B (t) I2 - Y ( 

while the function f:RXR”XRPXRq-R” on the right-hand part of (1.1) satisfies additionally 
a Lipschitz condition in the variable u and v I f (t* 57 Ul, 4 - f (t, 2, $7 nJ I < tl (t) (I % - % I + I VI - ?a I) 
for all x E Rn, I+, UI~E PO (t), ul, u~EQo(~), Here the functions a, b,n: R -R are nonnegative and 
locally Lebesgue-summable. Then condition (1.3) is fulfilled with the function Y (t) = a (t) + 
9 (t) (a (t) + B (t)) if 

for all z,z~R”. 

For an arbitrary mapping F: R x R” --f Ok, measurable in 
second one, we denote by F (r; t,, tz) the set of all measurable 

the first argument for a fixed 
branches of the mapping F(., 

x): R+QK onto the half-open interval t1< t< t,. This set is nonempty by the measurable 
selection theorem /3/. 

A mapping U+ u(t,x) which associates a nonempty set from P(x; t, co) with an arbitr- 
ary position (t,x)c Rn+’ is called a strategy of the first player. A strategy v t ‘v (t, z) 
of the second player is defined analogously. Suppose that the first'player has chosen a strat- 

egy U +- U (t, x). Consider the partitioning A of the semiaxis [to,“) into a system of half- 
open intervals 

zj r:- t < Ti+1, ro = t,, Ti'cO, i-em 

Let 1 A 1 = sup, (ri+, - zi). A solution of the differential equation 

x6’ = f (t, XA, ui (t), Vi (t)), ‘* Ti (*. t < Ti+l 

Ui (.) e u (Tir XA (zi)), vi (.) E Q (5~ (TL); rir T~+J, i = 0, 1, . ., XL\ (to) = ~0 

is called an Euler polygonal line generated by strategy u-t- u (t, x) . It can be shown that 

every Euler polygonal line x~ (t) = XA (t; to, x0, U,u) satisfies the differential inclusion 

x' E conv f (t, I, PO (t), Q. (t)) (1.4) 

Since the set of solutions of this differential inclusion with the initial condition x(t,)E X,, 
where X, E Q" is compact in C,, [to, tl], the following definition is correct. 

A function x(t) = x(t; to, .q,, U) for which we can find a sequence x+ (t) = zAk (t, t,, x0', u, UR) 
of Euler polygonal lines on any finite interval to < t< t, , such that 

xA,< (t) = x (th to < t < t, 

as z,, k -+x0, 1 Ak 1 +O, k-t cm , is called a motion generated by the first player's strategy U+ 

U (6 x) . A motion x(t) = x(t;t,,x,, V) generated by the second player's strategy v + v(t, 2) 
is defined analogously. We note that every motion of the first and second player, starting 
from point x0 at instant t,, is a solution of the differential inclusion 

x' E conv f (6 2, P (t, 4, Q (t, x)), x (to) = x0 

Further, we note that the estimate 

max max I f (t, 5 (t), u, u) I < mc (t) (1.5) 
~Qdt) u~Pa(t) 
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where the function m$ R+R is nonnegative and locallyLebesgue-summable and depends only on 
G, is valid for an arbitrary solution z(t), tE R , of differential inclusion (1.4) with in- 

itial conditions (to,z(to))E G, where GE Q"+l. 
Let nonempty closed sets M and N in the position space fl+', an initial position (to,%), 

and an instant T> to be specified. The encounter-evasion game being examined consists of 
the following two problems. 

Problem 1. Find a strategy U*t p(t, z) which ensures the contact 

(t, z (t)) E N, t, <- t < IY, (2, z (z)) E M, r < T 

for all motions s(t) = x(t; 10, X0, v*). 

Problem 2. Find open neighborhoods H(N) and G(iV) of sets N and M and a strategy 

v* i v* (t, z), which exclude the contact 

(t,s(t))~H(N), t,<tt(z, (T~(~))EG(M), T<T 
for all motions x(t) == 5 (t; to, 20, v*). 

2. We say that a set WCR”+’ is u-stable if for any position (t*, zJ E W, instant 
t* > t* , and control u* (e) E Q(z,; t*,p) we can find a solution s(t), t,Q tQ t* , of differ- 

ential inclusion 

2' (t) E cow f (t, 3 (t), P (t, 3, v* (th 5 (t,) = 2* 

such that (t*, x (t’)) E W or (T, x (7)) E M for some r, t*< r<F. We say that a set WC 
Rn+l is v-stable if for any position (t,,z*)E W, instant t* > t* , and control U* (.)E P(z,,; 
t,, t*) we can find a solution s(t), t+ < t< t*, of differential inclusion 

i (t) E conv f (6 x W, u* @I, Q 0, z$), z t&J = z, 
such that (t*, s(F)) E W or (2, s(z))@ H(N) for some ~,t, < T < t*. It can be prove. that 
the property Of u-stability (u-stability) in invariant relative to the closure operation, 
i.e., if set W is u-stable (v-stable), then its closure cl W is u-stable (u-stable). 

We present an example of a u-stable set. Let 

f (t, z, U, v) = A (t) .z + I - u 

and let mappings (1.2) be independent of r: P (t, z) = P (t),Q (t,z) = Q (L), and be locally Lebesgue-in- 
tegrable (see /5/l. Let X&to) be the fundamental matrix of solution of the homogeneous 
equation 

z' = A (t) z 

Assume that matrix A(t) is locally Le,besgue-integrable. Further, we assume that set N coincid- 
es with R"+' and that set M=R x MO, where the set MoC R" is nonempty and closed. By 
AIB we denote the geometric difference of sets A and B from R* 

The u-stability of set 

w = (f, 2) E Rn+l 1 x (T, f) z E MO - (X (T, 7) P (T) * X (I’, z) Q (7)) dr, t < T 

t 

can be verified directly. 
A strategy Ue-+ lP(t,x) of the first player, extremal to the closed set WcR”+l, is 

defined as follows. Let (t,,x& be an arbitrary position, If 
w I1 rt* = @, then we assume Ue (t*, 4) = P (x,; t*, m) ; if 

I',* = {(t, x) E R”+’ 1 t = t*). 
w n r&C i ('7 then we assume 

@* - w*,f(t,l’*. u* (0. L')) = 

where w, is the vector of the section of set W by the hyperplane I'(*, which is closest to pos- 
ition (tr, 5). A strategy P -+ Ve(t.,,, x$ of the second player, extremal to the closed set 
wcRR+1, is defined as follows. If rl+ n w = E, then Ve (t+, z.) = Q (CC*; tr, 0. If 

W=#= a, then 
rl* n 

r;‘(t,,2,)={v*(.)~Q(x,;t,,~)l min (ul+-.r*,f(t,z,,z!,L’*(t)))= 
UEW. %a*) 
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3. Let the function x(t),t _=; K , satisfy the equation 

z = f(t, & u*, (t), 1‘ (t)), x (t*) = .z* 

while the function y(t), tc= H, satisfies the differential inclusion 

y' ? conv f (t, y, p ct. Y,), u* (t)). Y (t*) = II*. 

where the function u(*)E Q(z*;t,,w) is arbitrary, while the functions [[* , .! .z: 
and v*(.)~Q(y,;t,,oo) are chosen from the conditions 

P (x*1 t,. ml 

Let p(t) = /z(t)- r/(t) 1. t> t,. It turns out that the estimate 

(3.1) 

where 

f 

and the function mc (.) is from (1.5), holds for all positions (&.I,) and (t*, y,) from the 
compact space GE Qnni' . 

The following statements are obtained, analogously to /l/, with the aid of this estimate. 

Lemma 1. If WCR”” is a closed u-stable set, Uet LJe(t,r) is a strategy extremal 
to this set, and (t,,r,)EW, then the inclusion (t, s(t))~ W is fulfilled for any motion x(t)= 
z(t; 1,, x0, Ue) up to contact (T,I('c))E il4. If contact with M does not occur at all for some 
motion x (t) = .r (t; t,. x,, up) , then for such a motion (t% LZZ (t)) csz W for all t > t,. 

Lemma 2. Let Ii'c R”+’ be a closed v-stable set, I/'-+ V’(t,x) be a strategy extremal 
to thisset, and (t,,s,) E W. Then (t, x (t)) F fi' for any motion x (t) -= I (t; t,, x0, Ve) , up to the 
instant z when (r, x f.c))z H(N) . If (t, r(t)) E H(N) for all time for some motion 2 (t) = T It; 

t,, 50, VF) > then (t, z (t)) I? W for all t > 10. 
From these statements follows 

Theorem. Suppose that an initial position (t,,x,)E R”” has been given and that an in- 
stant T > to has been chosen. When all the conditions formulated in Sect.1 are fulfilled, 
eitherproblem 1 or Problem 2 is always solvable. 

In contrast to /2/ we assume the measurability in t of mappings (1.2). The latter, in 

particular, required the adoption of other definitions of the basic elements of the game,such 
as strategies, stable sets, etc., in comparison with /1,2/. This, in its own turn, compelled 
ustouse the estimate (3.1), different from those in /1,2/, to prove the barrier properties 
of the extremal strategies, and to prove the invariance of the property of u(u)-stability rel- 
ativetothe closure operation. Finally, the remaining conditions imposed on the game in this 
article are somewhat weaker than the conditions in /1,2/. 

G. K. Pozharitskii posed the problem we have considered. The author thanks M.S. Nikol'skii 

for attention to the work. 
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